第一百三十三章 欧拉的七桥问题(拓扑学)
0.1秒记住本站域名 [ixs.cc]
点击下载小刀阅读APP

  这里柯尼斯堡,是普鲁士兴起之地,也是俄罗斯喜欢争夺的地方,后来是俄罗斯加里宁格勒。

  康德也来过这个地方,歌德巴赫也在这里提出猜想。

  殴拉也来到这里,在柯尼斯堡的七个桥这里经常闲逛,这样可以行走思考问题,想想自己以后该干什么。

  擅长把任何生活问题的殴拉,总觉得这七个桥有些怪怪的。

  时间一久,他才发现,着七个桥不能不走回头路的全部走完。

  对殴拉来说,他只喜欢一个地方逛一次,如果重复就会失去兴趣。

  殴拉看着着七个桥,心想:“如何走这个桥,才能不重复的全部走完?”

  对殴拉来说,没有无法解决的数学问题,只要设置一个模型就可以了。

  殴拉把七个桥按照对应位置画出了一个图,把可以行走的路线连接起来。

  连接之后,殴拉试图开始寻找一条路走法,但是画了半天,却还没有画出来。

  “难不成,不能一下子全部走完这七座桥?”

  殴拉发出疑问:“可是,这又是为什么?就算不能一步走完,也会有原因的吧?”

  后来欧拉把它转化成一个几何问题——一笔画问题。

  1736年29岁的欧拉向圣彼得堡科学院递交了的论文,在解答问题的同时,开创了数学的一个新的分支——图论与几何拓扑,也由此展开了数学史上的新历程。

  他不仅解决了此问题,且给出了连通图可以一笔画的充要条件是:奇点的数目不是0个就是2个。

点击下载小刀阅读APP,收录上百小说站,自动换源